Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Infinite-Dimensionality modulo Absolute Borel Classes

Volume 56 / 2008

Vitalij Chatyrko, Yasunao Hattori Bulletin Polish Acad. Sci. Math. 56 (2008), 163-176 MSC: Primary 54F45; Secondary 04A15, 54D35, 54H05. DOI: 10.4064/ba56-2-7

Abstract

For each ordinal we present separable metrizable spaces X_\alpha, Y_\alpha and Z_\alpha such that

(i) {\rm f}\,X_\alpha, f Y_\alpha, f Z_\alpha = \omega_0, where \rm f is either \rm trdef or {\cal K}_0\mbox{-trsur},

(ii) \mathop{A(\alpha)\mbox{-trind}} X_\alpha = \infty and \mathop{M(\alpha)\mbox{-trind}} X_\alpha = -1,

(iii) \mathop{A(\alpha)\mbox{-trind}} Y_\alpha = -1 and \mathop{M(\alpha)\mbox{-trind}} Y_\alpha = \infty, and

(iv) \mathop{A(\alpha)\mbox{-trind}} Z_\alpha = \mathop{M(\alpha)\mbox{-trind}} Z_\alpha = \infty and A(\alpha+1) \cap \mathop{M(\alpha+1)\mbox{-trind}} Z_\alpha = -1.

We also show that there exists no separable metrizable space W_\alpha with A(\alpha)\mbox{-trind}\, W_\alpha \ne \infty, \mathop{M(\alpha)\mbox{-trind}} W_\alpha \ne \infty and A(\alpha) \cap \mathop{M(\alpha)\mbox{-trind}} W_\alpha = \infty, where A(\alpha) (resp. M(\alpha)) is the absolutely additive (resp. multiplicative) Borel class.

Authors

  • Vitalij ChatyrkoDepartment of Mathematics
    Linköping University
    581 83 Linköping, Sweden
    e-mail
  • Yasunao HattoriDepartment of Mathematics
    Shimane University
    Matsue, 690-8504 Japan
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image