A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

An Inequality for Trigonometric Polynomials

Volume 60 / 2012

N. K. Govil, Mohammed A. Qazi, Qazi I. Rahman Bulletin Polish Acad. Sci. Math. 60 (2012), 241-247 MSC: 30D15, 41A17. DOI: 10.4064/ba60-3-4

Abstract

The main result says in particular that if $t (\zeta ) := \sum _{\nu = -n}^n c_\nu e^{ i \nu \zeta }$ is a trigonometric polynomial of degree $n$ having all its zeros in the open upper half-plane such that $|t (\xi )| \geq \mu $ on the real axis and $c_n \not = 0$, then $|t^\prime (\xi )| \geq \mu n$ for all real $\xi $.

Authors

  • N. K. GovilDepartment of Mathematics
    Auburn University
    Auburn, AL 36849-5310, U.S.A.
    e-mail
  • Mohammed A. QaziDepartment of Mathematics
    Tuskegee University
    Tuskegee, AL 36088, U.S.A.
    e-mail
  • Qazi I. RahmanDépartement de Mathématiques et de Statistique
    Université de Montréal
    Montréal, H3C 3J7, Canada
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image