Łojasiewicz Exponent of Overdetermined Mappings
Volume 61 / 2013
Bulletin Polish Acad. Sci. Math. 61 (2013), 27-34
MSC: 14P20, 14P10, 32C07.
DOI: 10.4064/ba61-1-4
Abstract
A mapping $F:\mathbb{R}^n\to\mathbb{R}^m$ is called overdetermined if $m>n$. We prove that the calculations of both the local and global Łojasiewicz exponent of a real overdetermined polynomial mapping $F:\mathbb{R}^n\to \mathbb{R}^m$ can be reduced to the case $m=n$.