Łojasiewicz Exponent of Overdetermined Mappings
Volume 61 / 2013
Bulletin Polish Acad. Sci. Math. 61 (2013), 27-34
MSC: 14P20, 14P10, 32C07.
DOI: 10.4064/ba61-1-4
Abstract
A mapping is called overdetermined if m>n. We prove that the calculations of both the local and global Łojasiewicz exponent of a real overdetermined polynomial mapping F:\mathbb{R}^n\to \mathbb{R}^m can be reduced to the case m=n.