A+ CATEGORY SCIENTIFIC UNIT

Cylinder cocycle extensions of minimal rotations on monothetic groups

Volume 101 / 2004

Mieczysław K. Mentzen, Artur Siemaszko Colloquium Mathematicum 101 (2004), 75-88 MSC: Primary 54H20. DOI: 10.4064/cm101-1-5

Abstract

The main results of this paper are: 1. No topologically transitive cocycle $\mathbb{R}^m$-extension of minimal rotation on the unit circle by a continuous real-valued bounded variation $\mathbb{Z}$-cocycle admits minimal subsets. 2. A minimal rotation on a compact metric monothetic group does not admit a topologically transitive real-valued cocycle if and only if the group is finite.

Authors

  • Mieczysław K. MentzenFaculty of Mathematics and Computer Science
    Nicolaus Copernicus University
    Chopina 12/18
    87-100 Toruń, Poland
    e-mail
  • Artur SiemaszkoFaculty of Mathematics and Information Technology
    University of Warmia and Mazury in Olsztyn
    Żołnierska 14A
    10-561 Olsztyn, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image