On pairs of Banach spaces which are isomorphic to complemented subspaces of each other
Volume 101 / 2004
Colloquium Mathematicum 101 (2004), 279-287
MSC: Primary 46B03; Secondary 46B20.
DOI: 10.4064/cm101-2-10
Abstract
We establish the existence of Banach spaces $E$ and $F$ isomorphic to complemented subspaces of each other but with $E^m \oplus F^n$ isomorphic to $E^p \oplus F^q$, $m, n, p, q \in {\mathbb N}$, if and only if $m=p$ and $n=q$.