A+ CATEGORY SCIENTIFIC UNIT

On wings of the Auslander–Reiten quivers of selfinjective algebras

Volume 103 / 2005

Marta Kwiecień, Andrzej Skowroński Colloquium Mathematicum 103 (2005), 265-285 MSC: 16D50, 16G10, 16G70. DOI: 10.4064/cm103-2-11

Abstract

We give necessary and sufficient conditions for a wing of an Auslander–Reiten quiver of a selfinjective algebra to be the wing of the radical of an indecomposable projective module. Moreover, a characterization of indecomposable Nakayama algebras of Loewy length $\geq3$ is obtained.

Authors

  • Marta KwiecieńFaculty of Mathematics and Computer Science
    Nicolaus Copernicus University
    Chopina 12/18
    87-100 Toruń, Poland
    e-mail
  • Andrzej SkowrońskiFaculty of Mathematics and Computer Science
    Nicolaus Copernicus University
    Chopina 12/18
    87-100 Toruń, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image