A+ CATEGORY SCIENTIFIC UNIT

Inequalities for two sine polynomials

Volume 105 / 2006

Horst Alzer, Stamatis Koumandos Colloquium Mathematicum 105 (2006), 127-134 MSC: 26D05, 42A05. DOI: 10.4064/cm105-1-11

Abstract

We prove:

(I) For all integers $n\geq 2$ and real numbers $x\in (0,\pi)$ we have $$ \alpha \leq \sum_{j=1}^{n-1}\frac{1}{n^2-j^2} \sin(jx) \leq \beta, $$ with the best possible constant bounds $$ \alpha=\frac{15-\sqrt{2073}}{10240}\sqrt{1998-10\sqrt{2073}}= -0.1171\dots ,\quad\ \beta=\frac{1}{3}. $$

(II) The inequality $$ 0<\sum_{j=1}^{n-1}{(n^2-j^2)} \sin(jx) $$ holds for all even integers $n\geq 2$ and $x\in (0,\pi)$, and also for all odd integers $n\geq 3$ and $x\in (0,\pi-\pi/n]$.

Authors

  • Horst AlzerMorsbacher Str. 10
    D-51545 Waldbröl, Germany
    e-mail
  • Stamatis KoumandosDepartment of Mathematics and Statistics
    The University of Cyprus
    P.O. Box 20537
    1678 Nicosia, Cyprus
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image