A+ CATEGORY SCIENTIFIC UNIT

Rational functions without poles in a compact set

Volume 106 / 2006

W. Kucharz Colloquium Mathematicum 106 (2006), 119-125 MSC: 14A05, 14E05, 13C20. DOI: 10.4064/cm106-1-10

Abstract

Let $X$ be an irreducible nonsingular complex algebraic set and let $K$ be a compact subset of $X$. We study algebraic properties of the ring of rational functions on $X$ without poles in $K$. We give simple necessary conditions for this ring to be a regular ring or a unique factorization domain.

Authors

  • W. KucharzMax-Planck-Institut für Mathematik
    Vivatsgasse 7
    53111 Bonn, Germany
    and
    Department of Mathematics and Statistics
    University of New Mexico
    Albuquerque, NM 87131-1141, U.S.A.
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image