A+ CATEGORY SCIENTIFIC UNIT

A basis of $ \mathbb{Z}_m$, II

Volume 108 / 2007

Min Tang, Yong-Gao Yong-Gao Colloquium Mathematicum 108 (2007), 141-145 MSC: 11B13, 11B34. DOI: 10.4064/cm108-1-12

Abstract

Given a set $A\subset \mathbb{N}$ let $\sigma_A(n)$ denote the number of ordered pairs $(a,a')\in A\times A$ such that $a+a'=n$. Erdős and Turán conjectured that for any asymptotic basis $A$ of $\mathbb{N}$, $\sigma_A(n)$ is unbounded. We show that the analogue of the Erdős–Turán conjecture does not hold in the abelian group $(\mathbb{Z}_m,+)$, namely, for any natural number $m$, there exists a set $A\subseteq\mathbb{Z}_m$ such that $A+A=\mathbb{Z}_m$ and $\sigma_A(\overline {n})\leq 5120$ for all $\overline {n}\in \mathbb{Z}_m$.

Authors

  • Min TangDepartment of Mathematics
    Anhui Normal University
    Wuhu 241000, China
    e-mail
  • Yong-Gao Yong-GaoDepartment of Mathematics
    Nanjing Normal University
    Nanjing 210097, China
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image