On the critical Neumann problem with lower order perturbations
Volume 108 / 2007
Colloquium Mathematicum 108 (2007), 225-246
MSC: 35B33, 35J65, 35Q55.
DOI: 10.4064/cm108-2-6
Abstract
We investigate the solvability of the Neumann problem (1.1) involving a critical Sobolev exponent and lower order perturbations in bounded domains. Solutions are obtained by min max methods based on a topological linking. A nonlinear perturbation of a lower order is allowed to interfere with the spectrum of the operator $-{\mit\Delta} $ with the Neumann boundary conditions.