A+ CATEGORY SCIENTIFIC UNIT

A note on the theorems of Lusternik–Schnirelmann and Borsuk–Ulam

Volume 111 / 2008

T. E. Barros, C. Biasi Colloquium Mathematicum 111 (2008), 35-42 MSC: Primary 55M20; Secondary 55M30, 55M35. DOI: 10.4064/cm111-1-3

Abstract

Let $p$ be a prime number and $X$ a simply connected Hausdorff space equipped with a free $\mathbb Z_p$-action generated by $f_p:X\rightarrow X$. Let $\alpha:S^{2n-1}\rightarrow S^{2n-1}$ be a homeomorphism generating a free $\mathbb Z_p$-action on the $(2n-1)$-sphere, whose orbit space is some lens space. We prove that, under some homotopy conditions on $X$, there exists an equivariant map $F:(S^{2n-1},\alpha)\rightarrow (X,f_p)$. As applications, we derive new versions of generalized Lusternik–Schnirelmann and Borsuk–Ulam theorems.

Authors

  • T. E. BarrosDM-UFSCar, CP 676
    13565-905 São Carlos-SP, Brazil
    e-mail
  • C. BiasiICMC-USP, CP 668
    13560-970 São Carlos-SP, Brazil
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image