On a separation of orbits in the module variety for domestic canonical algebras
Volume 111 / 2008
Colloquium Mathematicum 111 (2008), 283-295
MSC: 16G20, 16G60, 16G70, 14L30, 68Q99.
DOI: 10.4064/cm111-2-7
Abstract
Given a pair $M,M'$ of finite-dimensional modules over a domestic canonical algebra ${\mit\Lambda }$, we give a fully verifiable criterion, in terms of a finite set of simple linear algebra invariants, deciding if $M$ and $M'$ lie in the same orbit in the module variety, or equivalently, if $M$ and $M'$ are isomorphic.