A+ CATEGORY SCIENTIFIC UNIT

Regular orbital measures on Lie algebras

Volume 113 / 2008

Alex Wright Colloquium Mathematicum 113 (2008), 1-11 MSC: Primary 58C35; Secondary 22E60, 43A70. DOI: 10.4064/cm113-1-1

Abstract

Let $H_0$ be a regular element of an irreducible Lie algebra ${\mathfrak g}$, and let $\mu_{H_0}$ be the orbital measure supported on $O_{H_0}$. We show that $\widehat{\mu}_{H_0}^k\in L^2({\mathfrak g})$ if and only if $k>\dim{\mathfrak g} / (\dim{\mathfrak g}-\mathop{\rm rank}{\mathfrak g})$.

Authors

  • Alex WrightDepartment of Pure Mathematics
    University of Waterloo
    Waterloo, ON, Canada N2L 3G1
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image