On the Diophantine equation $x^2 + 2^{\alpha} 13^{\beta}= y^{n}$
Volume 116 / 2009
Colloquium Mathematicum 116 (2009), 139-146
MSC: 11D61, 11Y50.
DOI: 10.4064/cm116-1-7
Abstract
We find all the solutions of the Diophantine equation $$x^2 + 2^{\alpha} 13^{\beta}= y^n$$ in positive integers $x,y,\alpha,\beta,n\ge 3$ with $x$ and $y$ coprime.