Separated sequences in asymptotically uniformly convex Banach spaces
Volume 119 / 2010
Colloquium Mathematicum 119 (2010), 123-125
MSC: Primary 46B20.
DOI: 10.4064/cm119-1-7
Abstract
We prove that the unit sphere of every infinite-dimensional Banach space $X$ contains an $\alpha $-separated sequence, for every $0<\alpha <1+ \overline {\delta }_X(1)$, where $\overline {\delta }_X$ denotes the modulus of asymptotic uniform convexity of $X$.