A+ CATEGORY SCIENTIFIC UNIT

Prime factors of values of polynomials

Volume 122 / 2011

J. Browkin, A. Schinzel Colloquium Mathematicum 122 (2011), 135-138 MSC: Primary 11N32; Secondary 11R11, 11R27. DOI: 10.4064/cm122-1-12

Abstract

We prove that for every quadratic binomial $f(x)=rx^2+s\in{\mathbb Z}[x]$ there are pairs $\langle a,b\rangle\in{\mathbb N}^2$ such that $a\ne b,$ $f(a)$ and $f(b)$ have the same prime factors and $\min\{a,b\}$ is arbitrarily large. We prove the same result for every monic quadratic trinomial over ${\mathbb Z}.$

Authors

  • J. BrowkinInstitute of Mathematics
    Polish Academy of Sciences
    Śniadeckich 8
    00-956 Warszawa, Poland
    e-mail
  • A. SchinzelInstitute of Mathematics
    Polish Academy of Sciences
    Śniadeckich 8
    00-956 Warszawa, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image