A+ CATEGORY SCIENTIFIC UNIT

Some quartic number fields containing an imaginary quadratic subfield

Volume 122 / 2011

Stéphane R. Louboutin Colloquium Mathematicum 122 (2011), 139-148 MSC: Primary 11R16; Secondary 11R27, 11R29. DOI: 10.4064/cm122-1-13

Abstract

Let $\varepsilon$ be a quartic algebraic unit. We give necessary and sufficient conditions for (i) the quartic number field $K ={\mathbb Q}(\varepsilon)$ to contain an imaginary quadratic subfield, and (ii) for the ring of algebraic integers of $K$ to be equal to ${\mathbb Z}[\varepsilon]$. We also prove that the class number of such $K$'s goes to infinity effectively with the discriminant of $K$.

Authors

  • Stéphane R. LouboutinInstitut de Mathématiques de Luminy, UMR 6206
    163, avenue de Luminy, Case 907
    13288 Marseille Cedex 9, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image