A+ CATEGORY SCIENTIFIC UNIT

The composite of irreducible morphisms in regular components

Volume 123 / 2011

Claudia Chaio, María Inés Platzeck, Sonia Trepode Colloquium Mathematicum 123 (2011), 27-47 MSC: 16G70, 16G20, 16E10. DOI: 10.4064/cm123-1-3

Abstract

We study when the composite of $n$ irreducible morphisms between modules in a regular component of the Auslander–Reiten quiver is non-zero and lies in the $n+1$-th power of the radical $\Re $ of the module category. We prove that in this case such a composite belongs to $\Re ^{\infty }$. We apply these results to characterize those string algebras having $n$ irreducible morphisms between band modules such that their composite is a non-zero morphism in $\Re ^{n+1}$.

Authors

  • Claudia ChaioDepartamento de Matemática
    Facultad de Ciencias Exactas y Naturales
    Funes 3350
    Universidad Nacional de Mar del Plata
    7600 Mar del Plata, Argentina
    e-mail
  • María Inés PlatzeckInstituto de Matemática
    Universidad Nacional del Sur
    Av. Alem 1253
    8000 Bahía Blanca, Argentina
    e-mail
  • Sonia TrepodeDepartamento de Matemática
    Facultad de Ciencias Exactas y Naturales
    Funes 3350
    Universidad Nacional de Mar del Plata
    7600 Mar del Plata, Argentina
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image