A+ CATEGORY SCIENTIFIC UNIT

The norm spectrum in certain classes of commutative Banach algebras

Volume 123 / 2011

H. S. Mustafayev Colloquium Mathematicum 123 (2011), 95-114 MSC: 46J05, 46J20, 43A15, 43A25, 43A60. DOI: 10.4064/cm123-1-7

Abstract

Let $A$ be a commutative Banach algebra and let ${\mit\Sigma} _{A}$ be its structure space$.$ The norm spectrum $\sigma ( f) $ of the functional $f\in A^{\ast }$ is defined by $ \sigma ( f) =\overline{\{ f\cdot a:a\in A\} }\cap {\mit\Sigma} _{A},$ where $f\cdot a$ is the functional on $A$ defined by $ \langle f\cdot a,b\rangle =\langle f,ab\rangle $, $b\in A.$ We investigate basic properties of the norm spectrum in certain classes of commutative Banach algebras and present some applications.

Authors

  • H. S. MustafayevDepartment of Mathematics
    Faculty of Sciences
    Yuzuncu Yil University
    65080, Van, Turkey
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image