Une remarque sur les espaces d'interpolation $A^{\beta }$ qui sont faiblement LUR
Volume 123 / 2011
Colloquium Mathematicum 123 (2011), 197-204
MSC: Primary 46B70.
DOI: 10.4064/cm123-2-3
Abstract
Let $(A_{0},A_{1})$ be a pair of interpolation spaces and $\beta \in \mathopen ] 0,1\mathclose [ .$ We show that if $(A^{\beta },n_{\beta })$ is a weakly-LUR space for a specific norm $n_{\beta }$ (equivalent to the natural one), then $A_{\theta }=A^{\theta }$ for every $\theta \in \mathopen ] 0,1\mathclose [ .$