A+ CATEGORY SCIENTIFIC UNIT

Characterizing chainable, tree-like, and circle-like continua

Volume 124 / 2011

Taras Banakh, Zdzisław Kosztołowicz, Sławomir Turek Colloquium Mathematicum 124 (2011), 1-13 MSC: Primary 54F15, 54F50; Secondary 54D05. DOI: 10.4064/cm124-1-1

Abstract

We prove that a continuum $X$ is tree-like (resp. circle-like, chainable) if and only if for each open cover $\mathcal U_4=\{U_1,U_2,U_3,U_4\}$ of $X$ there is a $\mathcal U_4$-map $f\colon X\to Y$ onto a tree (resp. onto the circle, onto the interval). A continuum $X$ is an acyclic curve if and only if for each open cover $\mathcal U_3=\{U_1,U_2,U_3\}$ of $X$ there is a $\mathcal U_3$-map $f\colon X\to Y$ onto a tree (or the interval $[0,1]$).

Authors

  • Taras BanakhInstytut Matematyki
    Uniwersytet Humanistyczno-Przyrodniczy
    Jana Kochanowskiego
    Świętokrzyska 15
    25-406 Kielce, Poland
    and
    Department of Mathematics
    Ivan Franko National University of Lviv
    Lviv, Ukraine
    e-mail
  • Zdzisław KosztołowiczInstytut Matematyki
    Uniwersytet Humanistyczno-Przyrodniczy
    Jana Kochanowskiego
    Świętokrzyska 15
    25-406 Kielce, Poland
    e-mail
  • Sławomir TurekInstytut Matematyki
    Uniwersytet Humanistyczno-Przyrodniczy
    Jana Kochanowskiego
    Świętokrzyska 15
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image