A+ CATEGORY SCIENTIFIC UNIT

The Herz–Schur multiplier norm of sets satisfying the Leinert condition

Volume 124 / 2011

Éric Ricard, Ana-Maria Stan Colloquium Mathematicum 124 (2011), 255-274 MSC: Primary 43A22, 46L07, 47L07. DOI: 10.4064/cm124-2-10

Abstract

It is well known that in a free group $\def\F{{\mathbb F}}\F$, one has $\def\F{{\mathbb F}}\|\chi_E\|_{M_{cb}A(\F)}\leq 2$, where $E$ is the set of all the generators. We show that the (completely) bounded multiplier norm of any set satisfying the Leinert condition depends only on its cardinality. Consequently, based on a result of Wysoczański, we obtain a formula for $\def\F{{\mathbb F}}\|\chi_E\|_{M_{cb}A(\F)}$.

Authors

  • Éric RicardLaboratoire de Département de Mathématiques
    Université Franche-Comté
    25000 Besançon, France
    e-mail
  • Ana-Maria StanLaboratoire de Département de Mathématiques
    Université Franche-Comté
    Besançon, 25000, France
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image