Spaces of compact operators on $C({\bf 2}^{\mathfrak m} \times [0, \alpha])$ spaces
Volume 125 / 2011
Colloquium Mathematicum 125 (2011), 175-181
MSC: Primary 46B03; Secondary 46B25.
DOI: 10.4064/cm125-2-3
Abstract
We classify, up to isomorphism, the spaces of compact operators ${\mathcal K}(E, F)$, where $E$ and $F$ are the Banach spaces of all continuous functions defined on the compact spaces ${\bf 2}^{\mathfrak m} \times [0, \alpha]$, the topological products of Cantor cubes ${\bf 2}^{\mathfrak m}$ and intervals of ordinal numbers $[0, \alpha]$.