A+ CATEGORY SCIENTIFIC UNIT

Weakly amenable groups and the RNP for some Banach algebras related to the Fourier algebra

Volume 130 / 2013

Edmond E. Granirer Colloquium Mathematicum 130 (2013), 19-26 MSC: Primary 43A15, 46J10, 43A25, 46B22; Secondary 46J20, 43A30, 43A80, 22E30. DOI: 10.4064/cm130-1-2

Abstract

It is shown that if $G$ is a weakly amenable unimodular group then the Banach algebra $A_p^r(G)=A_p\cap L^r(G)$, where $A_p(G)$ is the Figà-Talamanca–Herz Banach algebra of $G$, is a dual Banach space with the Radon–Nikodym property if $1\leq r\leq \max(p,p')$. This does not hold if $p=2$ and $r>2$.

Authors

  • Edmond E. GranirerDepartment of Mathematics
    University of British Columbia
    Vancouver, B.C., Canada
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image