The Diophantine equation
Volume 132 / 2013
Colloquium Mathematicum 132 (2013), 95-100
MSC: Primary 11D61.
DOI: 10.4064/cm132-1-7
Abstract
Recently, Miyazaki and Togbé proved that for any fixed odd integer b\geq 5 with b\not =89, the Diophantine equation b^{x}+2^{y}=(b+2)^{z} has only the solution (x,y,z)=(1,1,1). We give an extension of this result.