A+ CATEGORY SCIENTIFIC UNIT

$L^{p}$-$L^{q}$ estimates for some convolution operators with singular measures on the Heisenberg group

Volume 132 / 2013

T. Godoy, P. Rocha Colloquium Mathematicum 132 (2013), 101-111 MSC: 43A80, 42A38. DOI: 10.4064/cm132-1-8

Abstract

We consider the Heisenberg group $\mathbb{H}^{n}=\mathbb{C}^{n}\times \mathbb{R}$. Let $\nu $ be the Borel measure on $\mathbb{H}^{n}$ defined by $ \nu (E)=\int_{\mathbb{C}^{n}}\chi _{E}( w,\varphi (w)) \eta (w)\,dw$, where $\varphi (w)=\sum_{j=1}^{n}a_{j}\vert w_{j}\vert ^{2}$, $w=(w_{1},\dots,w_{n})\in \mathbb{C}^{n}$, $a_{j}\in \mathbb{R}$, and $\eta (w)=\eta _{0}( \vert w\vert ^{2}) $ with $\eta _{0}\in C_{c}^{\infty }(\mathbb{R})$. We characterize the set of pairs $(p,q)$ such that the convolution operator with $\nu $ is $L^{p}(\mathbb{H}^{n})$-$L^{q}(\mathbb{H}^{n})$ bounded. We also obtain $L^{p}$-improving properties of measures supported on the graph of the function $\varphi (w)=|w|^{2m}$.

Authors

  • T. GodoyFacultad de Matemática, Astronomía y Física – Ciem
    Universidad Nacional de Córdoba – Conicet
    Ciudad Universitaria, 5000 Córdoba, Argentina
    e-mail
  • P. RochaFacultad de Matemática, Astronomía y Física – Ciem
    Universidad Nacional de Córdoba – Conicet
    Ciudad Universitaria, 5000 Córdoba, Argentina
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image