Explicit upper bounds for $|L(1, \chi )|$ when $\chi (3)=0$
Volume 133 / 2013
Colloquium Mathematicum 133 (2013), 23-34
MSC: Primary 11M06; Secondary 11Y35.
DOI: 10.4064/cm133-1-2
Abstract
Let $\chi $ be a primitive Dirichlet character of conductor $q$ and denote by $L(z, \chi )$ the associated $L$-series. We provide an explicit upper bound for $|L(1, \chi )|$ when $3$ divides $q$.