The almost Daugavet property and translation-invariant subspaces
Volume 134 / 2014
Colloquium Mathematicum 134 (2014), 151-163
MSC: Primary 46B04; Secondary 43A46.
DOI: 10.4064/cm134-2-1
Abstract
Let $G$ be a metrizable, compact abelian group and let $\varLambda$ be a subset of its dual group $\widehat G$. We show that $C_\varLambda(G)$ has the almost Daugavet property if and only if $\varLambda$ is an infinite set, and that $L^1_\varLambda(G)$ has the almost Daugavet property if and only if $\varLambda$ is not a $\varLambda(1)$ set.