A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

New braided monoidal categories over monoidal Hom-Hopf algebras

Volume 146 / 2017

Shengxiang Wang, Nanqing Ding Colloquium Mathematicum 146 (2017), 77-97 MSC: 16A10, 16W30. DOI: 10.4064/cm6706-11-2015 Published online: 25 August 2016

Abstract

Let $(H,\alpha )$ and $(B,\beta )$ be two monoidal Hom-Hopf algebras. We introduce the notion of a generalized Hom-Long dimodule and show that the category $^{B}_{H}\mathcal {L}$ of generalized Hom-Long dimodules is an autonomous category. We prove that $^{B}_{H}\mathcal {L}$ is a braided monoidal category if $(H,\alpha )$ is quasitriangular and $(B,\beta )$ is coquasitriangular, and we show that $^{B}_{H}\mathcal {L}$ is a subcategory of the Hom-Yetter–Drinfeld category $^{H\otimes B}_{H\otimes B}\mathcal {HYD}$. Moreover, we prove that the category of Hom-modules (resp., Hom-comodules) over a triangular (resp., cotriangular) Hom-Hopf algebra contains a symmetric generalized Hom-Long dimodule category.

Authors

  • Shengxiang WangDepartment of Mathematics
    Nanjing University
    Nanjing, 210093, P.R. China
    and
    School of Mathematics and Finance
    Chuzhou University
    Chuzhou, 239000, P.R. China
    e-mail
  • Nanqing DingDepartment of Mathematics
    Nanjing University
    Nanjing, 210093, P.R. China
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image