A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

An asymptotic formula for Goldbach’s conjecture with monic polynomials in $\mathbb {Z}[\theta ][x]$

Volume 148 / 2017

Abílio Lemos, Anderson Luís Albuquerque de Araujo Colloquium Mathematicum 148 (2017), 215-223 MSC: Primary 11R09; Secondary 11C08. DOI: 10.4064/cm6948-7-2016 Published online: 9 March 2017

Abstract

Let $k\geq 2$ be a squarefree integer, and $$ \theta=\begin{cases} \sqrt{-k} &\text{if }-k\not\equiv 1 \pmod4,\\ {(\sqrt{-k}+1)}/{2} &\text{if }-k\equiv 1 \pmod4.\end{cases} $$ We prove that the number $R(y)$ of representations of a monic polynomial $f(x)\in \mathbb Z[\theta][x]$, of degree $d\geq 1$, as a sum of two monic irreducible polynomials $g(x)$ and $h(x)$ in $\mathbb Z[\theta][x]$, with the coefficients of $g(x)$ and $h(x)$ bounded in modulus by $y$, is asymptotic to $(4y)^{2d-2}$.

Authors

  • Abílio LemosCCE, Departamento de Matemática
    Universidade Federal de Viçosa
    36570-900, Viçosa, MG, Brasil
    e-mail
  • Anderson Luís Albuquerque de AraujoCCE, Departamento de Matemática
    Universidade Federal de Viçosa
    36570-900, Viçosa, MG, Brasil
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image