Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

An asymptotic formula for Goldbach’s conjecture with monic polynomials in

Volume 148 / 2017

Abílio Lemos, Anderson Luís Albuquerque de Araujo Colloquium Mathematicum 148 (2017), 215-223 MSC: Primary 11R09; Secondary 11C08. DOI: 10.4064/cm6948-7-2016 Published online: 9 March 2017

Abstract

Let k\geq 2 be a squarefree integer, and \theta=\begin{cases} \sqrt{-k} &\text{if }-k\not\equiv 1 \pmod4,\\ {(\sqrt{-k}+1)}/{2} &\text{if }-k\equiv 1 \pmod4.\end{cases} We prove that the number R(y) of representations of a monic polynomial f(x)\in \mathbb Z[\theta][x], of degree d\geq 1, as a sum of two monic irreducible polynomials g(x) and h(x) in \mathbb Z[\theta][x], with the coefficients of g(x) and h(x) bounded in modulus by y, is asymptotic to (4y)^{2d-2}.

Authors

  • Abílio LemosCCE, Departamento de Matemática
    Universidade Federal de Viçosa
    36570-900, Viçosa, MG, Brasil
    e-mail
  • Anderson Luís Albuquerque de AraujoCCE, Departamento de Matemática
    Universidade Federal de Viçosa
    36570-900, Viçosa, MG, Brasil
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image