A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Strong Hopf modules for weak Hopf quasigroups

Volume 148 / 2017

J. N. Alonso Álvarez, J. M. Fernández Vilaboa, R. González Rodríguez Colloquium Mathematicum 148 (2017), 231-246 MSC: Primary 18D10; Secondary 16T05, 17A30, 20N05. DOI: 10.4064/cm6967-6-2016 Published online: 16 March 2017

Abstract

This paper is a further step in the study of the theory of modules associated to a weak Hopf quasigroup $H$. We introduce the category of strong $H$-Hopf modules, and we prove that there exists an adjoint equivalence between this category and the category of right modules over the image of the target morphism of $H$. In the Hopf quasigroup setting every Hopf module is strong, and we recover the results of Brzeziński. Also, in the weak Hopf case, every Hopf module is strong, and we generalize the theorem proved by Böhm, Nill and Szlachányi that contains as a particular instance the categorical equivalence associated to the category of Hopf modules for a Hopf algebra $H$.

Authors

  • J. N. Alonso ÁlvarezDepartamento de Matemáticas
    Universidad de Vigo
    Campus Universitario Lagoas-Marcosende
    E-36280 Vigo, Spain
    e-mail
  • J. M. Fernández VilaboaDepartamento de Álxebra
    Universidad de Santiago de Compostela
    E-15771 Santiago de Compostela, Spain
    e-mail
  • R. González RodríguezDepartamento de Matemática Aplicada II
    Universidad de Vigo
    Campus Universitario Lagoas-Marcosende
    E-36310 Vigo, Spain
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image