Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Homogeneous Rota–Baxter operators on the 3-Lie algebra (II)

Volume 149 / 2017

Ruipu Bai, Yinghua Zhang Colloquium Mathematicum 149 (2017), 193-209 MSC: Primary 17B05; Secondary 17D99. DOI: 10.4064/cm7000-4-2017 Published online: 8 May 2017

Abstract

We study k-order homogeneous Rota–Baxter operators of weight 1 on the simple 3-Lie algebra A_{\omega } (over a field \mathbb F of characteristic zero), which is realized by an associative commutative algebra A equipped with a derivation \varDelta and an involution \omega (Lemma 2.3). A k-order homogeneous Rota–Baxter operator on A_{\omega }, where k\in \mathbb Z, is a Rota–Baxter operator R satisfying R(L_m)=f(m+k)L_{m+k} for all generators \{ L_m \mid m\in \mathbb Z \} of A_{\omega } and a map f : \mathbb Z \rightarrow \mathbb F. We prove that R is a k-order homogeneous Rota–Baxter operator on A_{\omega } of weight 1 with k\not =0 if and only if R=0 (Theorem 3.2), and R is a 0-order homogeneous Rota–Baxter operator on A_{\omega } of weight 1 if and only if R is one of the thirty-eight possibilities which are described in Theorems 3.5, 3.7, 3.9, 3.10, 3.18, 3.21 and 3.22.

Authors

  • Ruipu BaiCollege of Mathematics and Information Science
    Hebei University
    Baoding 071002, China
    e-mail
  • Yinghua ZhangCollege of Mathematics and Information Science
    Hebei University
    Baoding 071002, China
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image