Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

Homological aspects of the adjoint cotranspose

Volume 150 / 2017

Xi Tang, Zhaoyong Huang Colloquium Mathematicum 150 (2017), 293-311 MSC: 18G25, 16E05, 16E10. DOI: 10.4064/cm7121-12-2016 Published online: 29 September 2017

Abstract

Let and S be rings and _R\omega_S a semidualizing bimodule. We introduce and study the adjoint cotransposes of modules and adjoint n-\omega-cotorsionfree modules. We show that the Auslander class with respect to _R\omega_S is the intersection of the class of adjoint \infty-\omega-cotorsionfree modules and the right \operatorname{Tor}-orthogonal class of \omega_S. As a consequence, the classes of adjoint \infty-\omega-cotorsionfree modules and of \infty-\omega-cotorsionfree modules are equivalent under Foxby equivalence if and only if they coincide with the Auslander and Bass classes with respect to \omega respectively. Moreover, we give some equivalent characterizations when the left and right projective dimensions of _R\omega_S are finite in terms of the properties of (adjoint) \infty-\omega-cotorsionfree modules.

Authors

  • Xi TangCollege of Science
    Guilin University of Technology
    541004 Guilin, Guangxi, P.R. China
    e-mail
  • Zhaoyong HuangDepartment of Mathematics
    Nanjing University
    210093 Nanjing, Jiangsu, P.R. China
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image

() {} []