A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Power values of arithmetic functions

Volume 151 / 2018

Błażej Żmija Colloquium Mathematicum 151 (2018), 19-25 MSC: 11A25, 11D99. DOI: 10.4064/cm7093-1-2017 Published online: 13 October 2017

Abstract

Let $f_{1},\ldots ,f_{N}$ be arithmetic functions, i.e., functions whose domain is equal to $\mathbb {N}$. Suppose that for any $j=1,\ldots ,N$ there exist $a_{j,1}\ldots ,a_{j,n_{j}}\in \mathbb {N}$ and $b_{j,1},\ldots ,b_{j,n_{j}}\in \mathbb {Z}\setminus \{0\}$ such that $f_{j}(p)=(a_{j,1}p+b_{j,1})\cdot \ldots \cdot (a_{j,n_{j}}p+b_{j,n_{j}})$ for any prime $p$ and that $f_{j}(p_{1}\ldots p_{k})=f_{j}(p_{1})\ldots f_{j}(p_{k})$ for any distinct primes $p_{1},\ldots ,p_{k}$. We prove that for any positive integer $r$ there exist infinitely many positive integers $m$ such that all numbers $f_{j}(m)$, $j=1,\ldots ,N$, are $r$th powers of integers.

Authors

  • Błażej ŻmijaJagiellonian University
    Faculty of Mathematics and Computer Science
    Institute of Mathematics
    Łojasiewicza 6
    30-348 Kraków, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image