A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On the image of Jones’ set function $\mathcal {T}$

Volume 153 / 2018

Javier Camargo, Sergio Macías, Carlos Uzcátegui Colloquium Mathematicum 153 (2018), 1-19 MSC: Primary 54B20. DOI: 10.4064/cm7037-4-2017 Published online: 12 March 2018

Abstract

We study possible images of Jones’ set function $\mathcal {T}$. In particular, we are interested in when either $\mathcal {T}(\mathcal {F}_1(X))$ or $\mathcal {T}(2^X)$ is finite or countable. We introduce the notion of $\omega $-indecomposable continuum as a generalization of the well known concept of $n$-indecomposable continuum. We also present results about connectedness and compactness of $\mathcal {T}(2^X)$. Finally, we give a generalization, to continua with the property of Kelley, of a couple of results known for homogeneous continua.

Authors

  • Javier CamargoEscuela de Matemáticas
    Facultad de Ciencias
    Universidad Industrial de Santander
    Ciudad Universitaria
    Carrera 27 Calle 9
    Bucaramanga, Santander, A.A. 678, Colombia
    e-mail
  • Sergio MacíasInstituto de Matemáticas
    Universidad Nacional Autónoma de México
    Circuito Exterior, Ciudad Universitaria
    México D.F., C.P. 04510, México
    e-mail
  • Carlos UzcáteguiEscuela de Matemáticas
    Facultad de Ciencias
    Universidad Industrial de Santander
    Ciudad Universitaria
    Carrera 27 Calle 9
    Bucaramanga, Santander, A.A. 678, Colombia
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image