Generalized von Neumann–Jordan constant for the Banaś–Frączek space
Volume 154 / 2018
Colloquium Mathematicum 154 (2018), 149-156
MSC: Primary 46B20; Secondary 46B99.
DOI: 10.4064/cm7422-1-2018
Published online: 20 August 2018
Abstract
The exact value of the generalized von Neumann–Jordan constant is found for the Banaś–Frączek space $\mathbb {R}^2_\lambda $: $C^{(p)}_{\rm NJ}(\mathbb {R}^2_\lambda )=1+(1-{1/\lambda ^{2}})^{{p/2}}$ ($\lambda \gt 1$, $p\geq 2$, $\lambda ^2(1-{1/\lambda ^{2}})^{{p/2}} \geq 1$).