A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On Diophantine triples of Pell numbers

Volume 156 / 2019

Salah Eddine Rihane, Mohand Ouamar Hernane, Alain Togbé Colloquium Mathematicum 156 (2019), 273-285 MSC: 11D09, 11D45, 11B37, 11J86. DOI: 10.4064/cm7387-7-2018 Published online: 1 February 2019

Abstract

Let $P_m$ be the $m$th Pell number. We prove that if $2P_{2n}P_k+1$ and $2P_{2n+2}P_k+1$ are both perfect squares, then $k=2n$ or $k=2n+2$ for $n\geq 1$.

Authors

  • Salah Eddine RihaneUniversité des Sciences et
    de la Technologie Houari-Boumediène (USTHB)
    Faculté de Mathématiques
    Laboratoire d’Algèbre et Théorie des Nombres, BP 32
    16111 Bab-Ezzouar, Alger, Algérie
    e-mail
  • Mohand Ouamar HernaneUniversité des Sciences et
    de la Technologie Houari-Boumediène (USTHB)
    Faculté de Mathématiques
    Laboratoire d’Algèbre et Théorie des Nombres, BP 32
    16111 Bab-Ezzouar, Alger, Algérie
    e-mail
  • Alain TogbéDepartment of Mathematics,
    Statistics, and Computer Science
    Purdue University Northwest
    1401 S, U.S. 421
    Westville, IN 46391, U.S.A.
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image