Processing math: 0%

Wykorzystujemy pliki cookies aby ułatwić Ci korzystanie ze strony oraz w celach analityczno-statystycznych.

A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On the Diophantine equation involving Laurent polynomials, II

Volume 158 / 2019

Yong Zhang, Arman Shamsi Zargar Colloquium Mathematicum 158 (2019), 119-126 MSC: Primary 11D72, 11D25; Secondary 11D41, 11G05. DOI: 10.4064/cm7528-10-2018 Published online: 23 July 2019

Abstract

We investigate the non-trivial rational parametric solutions of the Diophantine equation f(x)f(y)=f(z)^n, where f=x^k+ax^{k-1}+b/x, k\geq 2, x^2+a/x+b/x^2 for n=1, and f=x^2+ax+b+a^3/(27x), x^2+ax+b+a^3/(16x)+a^4/(256x^2) for n=2.

Authors

  • Yong ZhangSchool of Mathematics and Statistics
    Changsha University of Science and Technology
    Hunan Provincial Key Laboratory
    of Mathematical Modeling
    and Analysis in Engineering
    Changsha 410114, People’s Republic of China
    e-mail
  • Arman Shamsi ZargarDepartment of Mathematics
    and Applications
    Faculty of Science
    University of Mohaghegh Ardabili
    Ardabil 56199-11367, Iran
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image