A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

The star countable spread and star ccc property

Volume 158 / 2019

A. D. Rojas-Sánchez, Á. Tamariz-Mascarúa Colloquium Mathematicum 158 (2019), 213-232 MSC: 54D20, 54A25. DOI: 10.4064/cm7554-10-2018 Published online: 5 August 2019

Abstract

For a topological property $P$, say that a space $X$ is star $P$ if for every open cover $\mathcal {U}$ of $X$ there exists a subspace $A\subset X$ with the property $P$ such that $\operatorname{st} ( A,\mathcal {U} ) =X$. We analyze star ccc spaces and spaces of star countable spread describing the relationship between the respective classes as well as their place among the classes of star countable spaces, star Lindelöf spaces and feebly Lindelöf spaces. We show that, in some nice classes of spaces star countable spread and star ccc propery are equivalent to the Lindelöf property or separability. The following statements are the main results of this paper:

(i) a space $X$ is of star countable spread if and only if $X$ is star hereditarily Lindelöf;

(ii) under $\mathsf {CH}$, there is a space of star countable spread which is not star countable;

(iii) the star ccc property is not inherited by regular closed subsets even in the class of Tikhonov star countable spaces;

(iv) under $2^\omega = 2^{\omega _1}$, there exists a normal space of star countable extent which is not of star countable spread.

Authors

  • A. D. Rojas-SánchezDepartamento de Matemáticas
    Facultad de Ciencias
    Universidad Nacional Autónoma de México
    Circuito exterior s/n, Ciudad Universitaria
    04510, Ciudad de México, México
    e-mail
  • Á. Tamariz-MascarúaDepartamento de Matemáticas
    Facultad de Ciencias
    Universidad Nacional Autónoma de México
    Circuito exterior s/n, Ciudad Universitaria
    04510, Ciudad de México, México
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image