A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Upper bounds for the number of solutions for the Diophantine equation $y^{2}=px( Ax^{2}-C) $ $(C=2,\pm 1,\pm 4) $

Volume 159 / 2020

Farid Bencherif, Rachid Boumahdi, Tarek Garici, Zak Schedler Colloquium Mathematicum 159 (2020), 243-257 MSC: Primary 11D25; Secondary 11B39. DOI: 10.4064/cm7704-3-2019 Published online: 25 November 2019

Abstract

The purpose of this paper is to give new upper bounds for the number of positive solutions for the Diophantine equation $y^{2}=px(Ax^{2}-C)$, where $C\in \{2,\pm 1,\pm 4\}$, $p$ is an odd prime and $A$ is a positive integer.

Authors

  • Farid BencherifFaculté de Mathématiques
    USTHB
    Alger, Algeria
    e-mail
  • Rachid BoumahdiLA3C, USTHB
    and
    École Nationale Supérieure d’Informatique
    Alger, Algeria
    e-mail
  • Tarek GariciFaculté de Mathématiques
    USTHB
    Alger, Algeria
    e-mail
  • Zak SchedlerDepartment of Mathematics and Statistics
    Brock University
    St. Catharines, Ontario, Canada
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image