A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Path connectedness, local path connectedness and contractibility of $\mathcal{S}_c(X)$

Volume 160 / 2020

Javier Camargo, David Maya, Patricia Pellicer-Covarrubias Colloquium Mathematicum 160 (2020), 183-211 MSC: 54A20, 54B20. DOI: 10.4064/cm7516-1-2019 Published online: 24 January 2020

Abstract

The hyperspace of all nontrivial convergent sequences in a Hausdorff space $X$ is denoted by $\mathcal {S}_c(X)$. This hyperspace is endowed with the Vietoris topology. In connection with a question and a problem by García-Ferreira, Ortiz-Castillo and Rojas-Hernández, we study the path connectedness and contractibility of $\mathcal {S}_c(X)$. We present necessary conditions on $X$ for the path connectedness of $\mathcal {S}_c(X)$, and also some sufficient conditions. Further, we characterize the local path connectedness of $\mathcal {S}_c(X)$ in terms of that of $X$. We prove the contractibility of $\mathcal {S}_c(X)$ for a class of spaces, and finally we study the connectedness of Whitney blocks and Whitney levels for $\mathcal {S}_c(X)$.

Authors

  • Javier CamargoEscuela de Matemáticas
    Facultad de Ciencias
    Universidad Industrial de Santander
    Ciudad Universitaria, Carrera 27 Calle 9
    Bucaramanga, Santander, A.A. 678, Colombia
    e-mail
  • David MayaUniversidad Autónoma del Estado de México
    Facultad de Ciencias
    Instituto Literario 100, Col. Centro
    Toluca, CP 50000, Mexico
    e-mail
    e-mail
  • Patricia Pellicer-CovarrubiasDepartamento de Matemáticas
    Facultad de Ciencias
    Circuito ext. s/n
    Ciudad Universitaria, C.P. 04510
    CDMX, Mexico
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image