A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Some topological and metric properties of the space of $\ell _1$-predual hyperplanes in $c$

Volume 168 / 2022

Agnieszka Gergont, Łukasz Piasecki Colloquium Mathematicum 168 (2022), 229-247 MSC: Primary 46B03, 54E35; Secondary 46B45. DOI: 10.4064/cm8561-7-2021 Published online: 30 December 2021

Abstract

We study topological and metric properties of the space $(\mathcal {H},d)$, where $\mathcal {H}$ is the set of all $\ell _1$-predual hyperplanes in the space $c$ of convergent sequences, $d$ denotes the Banach–Mazur distance and we identify hyperplanes that are almost isometric. The space $c$ and its subspace $c_0$ of sequences converging to $0$ are the simplest examples of elements in $\mathcal {H}$. First we prove that $(\mathcal {H},d)$ is homeomorphic to $(K,d_{\ell _1})$ with $K=\{x \in \ell _{1}: \left \| x\right \| \leq 1$ and $x(i)\geq x(i+1)\geq 0$ for all $i\in \mathbb {N}\}$. We provide optimal lower bounds for the distortions $\| T\|\, \| T^{-1}\|$ of isomorphic embeddings $T$ from an arbitrarily chosen element of $\mathcal {H}$ into an infinite-dimensional $L_1$-predual $X$ such that $(\operatorname {ext}B_{X^*})’\subset r B_{X^*}$ for some $r \in [0,1)$. Finally, we apply the above results to construct a homotopy contracting $\mathcal {H}$ to $c_0$ along the shortest paths in $\mathcal {H}$ and we calculate their lengths. For instance, we show that the shortest path in $\mathcal {H}$ joining $c$ and $c_0$ has length $\ln 4$.

Authors

  • Agnieszka GergontInstytut Matematyki
    Uniwersytet Marii Curie-Skłodowskiej
    Pl. Marii Curie-Skłodowskiej 1
    20-031 Lublin, Poland
    e-mail
  • Łukasz PiaseckiInstytut Matematyki
    Uniwersytet Marii Curie-Skłodowskiej
    Pl. Marii Curie-Skłodowskiej 1
    20-031 Lublin, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image