A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Semi-Kelley compactifications of $(0,1]$

Volume 168 / 2022

Mauricio Chacón-Tirado, Daniel Embarcadero-Ruiz, Jimmy A. Naranjo-Murillo, Ivon Vidal-Escobar Colloquium Mathematicum 168 (2022), 325-340 MSC: Primary 54F15, 54F65; Secondary 54F50, 54D35, 54D40. DOI: 10.4064/cm8192-4-2021 Published online: 7 February 2022

Abstract

We characterize the semi-Kelley compactifications of $(0,1]$ with remainder being an arc or a simple closed curve. We also prove that there are no semi-Kelley compactifications of $(0,1]$ with remainder being a triod. Finally, we prove that if $X$ is a semi-Kelley compactification of $(0,1]$ with remainder being a Peano continuum $G$, then $G$ is an arc or a simple closed curve.

Authors

  • Mauricio Chacón-TiradoFacultad de Ciencias Físico Matemáticas
    Benemérita Universidad Autónoma de Puebla
    Avenida San Claudio y 18 Sur
    Colonia San Manuel
    Ciudad Universitaria
    72570 Puebla, Mexico
    e-mail
  • Daniel Embarcadero-RuizInstituto de Investigaciones
    en Matemáticas Aplicadas
    y Sistemas (IIMAS)
    Circuito Escolar 3000, C.U., Coyoacán
    04510 Ciudad de México, Mexico
    e-mail
  • Jimmy A. Naranjo-MurilloInstituto de Matemáticas
    Universidad Nacional Autónoma de México
    Circuito Exterior, C.U., Coyoacán
    04510 Ciudad de México, Mexico
    e-mail
  • Ivon Vidal-EscobarUniversidad de las Américas Puebla
    Ex Hacienda Santa Catarina Mártir S/N
    San Andrés Cholula
    72810 Puebla, Mexico
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image