A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Pseudo-homotopies between maps on g-growth hyperspaces of continua

Volume 170 / 2022

Félix Capulín, Enrique Castañeda-Alvarado, Leonardo Juárez-Villa, David Maya Colloquium Mathematicum 170 (2022), 41-64 MSC: Primary 54F16; Secondary 54C05. DOI: 10.4064/cm8254-7-2021 Published online: 15 April 2022

Abstract

We introduce the concept of g-growth hyperspace: if $X$ is a continuum, then a non-empty subset $\mathcal H$ of $2^X$ is a g-growth hyperspace of $X$ provided that if $\mathcal A$ is a subcontinuum of $2^X$ and $\mathcal A \cap \mathcal H \neq \emptyset $, then $\bigcup \mathcal A \in \mathcal H$. We study pseudo-homotopies between maps of hyperspaces of continua. As a consequence, we show that pseudo-contractibility and contractibility are equivalent in g-growth hyperspaces.

Authors

  • Félix CapulínFacultad de Ciencias, Departamento de Matemáticas
    Universidad Autónoma del Estado de México
    Instituto Literario No. 100
    Colonia Centro
    C.P. 50000, Toluca, Estado de México, México
    e-mail
    e-mail
  • Enrique Castañeda-AlvaradoFacultad de Ciencias, Departamento de Matemáticas
    Universidad Autónoma del Estado de México
    Instituto Literario No. 100
    Colonia Centro
    C.P. 50000, Toluca, Estado de México, México
    e-mail
  • Leonardo Juárez-VillaFacultad de Ciencias, Departamento de Matemáticas
    Universidad Autónoma del Estado de México
    Instituto Literario No. 100
    Colonia Centro
    C.P. 50000, Toluca, Estado de México, México
    e-mail
  • David MayaFacultad de Ciencias, Departamento de Matemáticas
    Universidad Autónoma del Estado de México
    Instituto Literario No. 100
    Colonia Centro
    C.P. 50000, Toluca, Estado de México, México
    e-mail
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image