A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Short proofs for interpolation inequalities in Sobolev spaces with variable exponents

Volume 170 / 2022

Tan Duc Do, Bui Le Trong Thanh, Nguyen Ngoc Trong Colloquium Mathematicum 170 (2022), 307-314 MSC: Primary 46E35; Secondary 46B70, 26D10. DOI: 10.4064/cm8619-12-2021 Published online: 30 May 2022

Abstract

We present very short proofs for three versions of the Gagliardo–Nirenberg inequality in the setting of Sobolev spaces with variable exponents. These are formally expressed by $$ \|\nabla ^k f\|_{L^{r(\cdot )}(\mathbb {R}^d)} \le C(d,p,q,r,k,m) \, \|f\|_{L^{q(\cdot )}(\mathbb {R}^d)}^{1-\theta } \, \|\nabla ^m f\|_{L^{p(\cdot )}(\mathbb {R}^d)}^{\theta },$$ $$\|\nabla ^k f\|_{L^{p(\cdot )}(\mathbb {R}^d)} \le C(d,q,k,m) \, \|f\|_{L^{q(\cdot )}(\mathbb {R}^d)}^\theta \, \|\nabla ^m f\|_{{\rm BMO}(\mathbb {R}^d)}^{1-\theta },$$ $$\|\nabla ^k f\|_{L^{p(\cdot )}(\mathbb {R}^d)} \le C(d,q,k,m) \, \|f\|_{{\rm BMO}(\mathbb {R}^d)}^\theta \, \|\nabla ^m f\|_{L^{q(\cdot )}(\mathbb {R}^d)}^{1-\theta }.$$ The proofs employ Muramatu’s integral formula.

Authors

  • Tan Duc DoDivision of Applied Mathematics
    Thu Dau Mot University
    Binh Duong Province, Vietnam
    e-mail
  • Bui Le Trong ThanhFaculty of Mathematics and Computer Science
    University of Science
    Ho Chi Minh City, Vietnam
    and
    Vietnam National University
    Ho Chi Minh City, Vietnam
    e-mail
  • Nguyen Ngoc TrongHo Chi Minh City University of Education
    Ho Chi Minh City, Vietnam
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image