A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

The hyperspace of noncut subcontinua of graphs and dendrites

Volume 173 / 2023

Rodrigo Hernández-Gutiérrez, Verónica Martínez-de-la-Vega, Jorge M. Martínez-Montejano, Jorge E. Vega Colloquium Mathematicum 173 (2023), 57-75 MSC: Primary 54F50; Secondary 54B20, 54E50, 54F15, 54F65. DOI: 10.4064/cm8947-9-2022 Published online: 28 March 2023

Abstract

Given a continuum $X$, let $C(X)$ denote the hyperspace of all subcontinua of $X$. In this paper we study the Vietoris hyperspace $NC^{*}(X)=\{ A \in C(X):X\setminus A$ is connected$\}$ when $X$ is a finite graph or a dendrite; in particular, we give conditions under which $NC^{*}(X)$ is compact, connected, locally connected or totally disconnected. Also, we prove that if $X$ is a dendrite and the set of endpoints of $X$ is dense, then $NC^{*}(X)$ is homeomorphic to the Baire space of irrational numbers.

Authors

  • Rodrigo Hernández-GutiérrezDepartamento de Matemáticas
    Universidad Autónoma Metropolitana
    Campus Iztapalapa
    Iztapalapa, 09310, México City, México
    e-mail
  • Verónica Martínez-de-la-VegaInstituto de Matemáticas
    Universidad Nacional Autónoma de México
    Ciudad de México, 04510, México
    e-mail
  • Jorge M. Martínez-MontejanoDepartamento de Matemáticas
    Facultad de Ciencias
    Universidad Nacional Autónoma de México
    Ciudad de México, 04510, México
    e-mail
  • Jorge E. VegaInstituto de Matemáticas
    Universidad Nacional Autónoma de México
    Ciudad de México, 04510, México
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image