A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Some notes on topological calibers

Volume 174 / 2023

Alejandro Ríos-Herrejón, Ángel Tamariz-Mascarúa Colloquium Mathematicum 174 (2023), 257-283 MSC: Primary 54A25; Secondary 54A35, 54B10 DOI: 10.4064/cm9098-8-2023 Published online: 11 December 2023

Abstract

We show that the definition of caliber given by Engelking in 1989, which we will call caliber$^*$, differs from the traditional notion of this concept in some cases and agrees in others.

For instance, we show that if $\kappa $ is an infinite cardinal with $2^{\kappa} \lt \aleph _\kappa $ and $\mathrm{cf}(\kappa ) \gt \omega $, then there exists a compact Hausdorff space $X$ such that $o(X)=2^{\aleph _\kappa }=|X|$, $\aleph _\kappa $ is a caliber$^*$ for $X$ and $\aleph _\kappa $ is not a caliber for $X$.

On the other hand, we show that if $\lambda $ is an infinite cardinal number, $X$ is a Hausdorff space with $|X| \gt 1$, $\phi \in \{w ,nw\}$, $o(X) = 2^{\phi (X)}$ and $\mu := o(X^\lambda )$, then the calibers for $X^\lambda $ and the true calibers$^*$ (that is, those which are less than or equal to $\mu $) coincide, and are precisely those that have uncountable cofinality.

Authors

  • Alejandro Ríos-HerrejónDepartamento de Matemáticas
    Facultad de Ciencias
    Universidad Nacional Autónoma de México
    C.P. 04510, Ciudad de México, Mexico
    e-mail
  • Ángel Tamariz-MascarúaDepartamento de Matemáticas
    Facultad de Ciencias
    Universidad Nacional Autónoma de México
    Circuito ext. s/n, Ciudad Universitaria
    C.P. 04510, México, CDMX México
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image