A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

Hierarchy of curves with weakly confluent maps

Volume 174 / 2023

Alejandro Illanes, Verónica Martínez-de-la-Vega, Jorge M. Martínez-Montejano, Daria Michalik Colloquium Mathematicum 174 (2023), 241-255 MSC: Primary 54F50; Secondary 54E50, 54F15, 54F65 DOI: 10.4064/cm9109-8-2023 Published online: 11 December 2023

Abstract

Given continua $X$, $Y$ and a class $\mathcal F$ of maps between continua, define $X\geq _{\mathcal F}Y$ if there exists an onto map $f:X\rightarrow Y$ belonging to $\mathcal F$. A map $f:X\rightarrow Y$ is weakly confluent if for each subcontinuum $B$ of $Y$, there exists a subcontinuum $A$ of $X$ such that $f(A)=B$. In this paper we consider the class $\mathcal W$ of weakly confluent maps. We study the hierarchy of curves with respect to the partial order $\leq _{\mathcal W}$. Two continua $X$ and $Y$ are $\mathcal W$-equivalent provided that $X\leq _{\mathcal W}Y$ and $Y\leq _{\mathcal W}X$. A continuum $X$ is $\mathcal W$-isolated provided that the following implication holds: if $Y$ is a continuum and $X$ and $Y$ are $\mathcal W$-equivalent, then $X$ and $Y$ are homeomorphic. Among other results, (a) we study how the class of dendrites with finite set of ramification points behaves under $\leq _{\mathcal W}$, (b) using $\leq _{\mathcal W}$, we compare dendrites with other curves, (c) we characterize $\mathcal W$-isolated finite graphs.

Authors

  • Alejandro IllanesInstituto de Matemáticas
    Universidad Nacional Autónoma de México
    Ciudad de México, 04510, Mexico
    e-mail
  • Verónica Martínez-de-la-VegaInstituto de Matemáticas
    Universidad Nacional Autónoma de México
    Ciudad de México, 04510, Mexico
    e-mail
  • Jorge M. Martínez-MontejanoDepartamento de Matemáticas
    Facultad de Ciencias
    Universidad Nacional Autónoma de México
    Ciudad de México, 04510, Mexico
    e-mail
  • Daria MichalikDepartment of Mathematics
    Jan Kochanowski University
    25-406 Kielce, Poland
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image