A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

A simple proof for the upper bound of a theorem of T. Łuczak

Volume 175 / 2024

Lei Shang, Lulu Fang Colloquium Mathematicum 175 (2024), 183-186 MSC: Primary 11K50; Secondary 28A80 DOI: 10.4064/cm9352-4-2024 Published online: 13 May 2024

Abstract

Let $b,c \gt 1$, and let $[a_1(x),a_2(x),a_3(x),\ldots ]$ be the continued fraction expansion of $x\in [0,1)$. The Hausdorff dimensions of the sets $$ \widetilde E(b,c)=\{x\in [0,1): a_n(x) \geq c^{b^n}\ \text{for all}\ n \in \mathbb N\} $$ and $$ E(b,c)=\{x\in [0,1): a_n(x) \geq c^{b^n}\ \text{for infinitely many}\ n \in \mathbb N\} $$ are equal to $1/(b+1)$, and play an important role in the dimension theory of continued fractions. A simple proof for the (optimal) lower bound of the Hausdorff dimension of $\widetilde E(b,c)$ was found by Feng et al. (1997). The proof for the upper bound given by Łuczak (1997) is based on an involved covering argument and a claim in combinatorics. In this note, we give a proof for the upper bound of the Hausdorff dimension of $E(b,c)$ without technical arguments.

Authors

  • Lei ShangCollege of Sciences
    Nanjing Agricultural University
    210095 Nanjing, P.R. China
    e-mail
  • Lulu FangSchool of Mathematics and Statistics
    Nanjing University of Science and Technology
    210094 Nanjing, P.R. China
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image