A+ CATEGORY SCIENTIFIC UNIT

PDF files of articles are only available for institutions which have paid for the online version upon signing an Institutional User License.

On fractional sum of the von Mangoldt function

Volume 177 / 2024

Xiaodong Lü, Xinyue Xu Colloquium Mathematicum 177 (2024), 11-19 MSC: Primary 11N37; Secondary 11L07 DOI: 10.4064/cm9418-10-2024 Published online: 2 December 2024

Abstract

Let $\Lambda (n)$ be the von Mangoldt function, and let $[t]$ be the integral part of real number $t$. We prove the asymptotic formula \[ \sum _{n\le x}\Lambda \left(\left[ \frac{x}{n}\right]\right) =x\sum _{d=1}^\infty \frac{\Lambda (d)}{d(d+1)}+O( x^{22/47+\varepsilon })\quad\ \text{for any $\varepsilon \gt 0$.} \]

Authors

  • Xiaodong LüSchool of Mathematical Science
    Yangzhou University
    Yangzhou, Jiangsu, 225002, P. R. China
    e-mail
  • Xinyue XuSchool of Mathematical Science
    Yangzhou University
    Yangzhou, Jiangsu, 225002, P. R. China
    e-mail

Search for IMPAN publications

Query phrase too short. Type at least 4 characters.

Rewrite code from the image

Reload image

Reload image